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Setting the stage 

νµ→ νe and νe +N → e + invisible N' + (invisible n π±s, n≥0)  

νµ,τ,e + N → νµ,τ,e + N' + π0 + (invisible n π±s, n≥0)

Look for single electron events

Major background

νe contamination in beam (typically 0.7%)

γ (γ)

How do we find the signal for νµ→ ve

~ a half megaton F.V. water Cherenkov detector, for example UNO
at 2,540 (BNL-HS) km and 1,480 km (Fermilab-Henderson) from the
beam source
BNL very long baseline wide band neutrino beam 
VLB neutrino oscillation experiment

See, for example, PRD68 (2003) 12002 by BNL group for physics argument.
But it is based on 4-vector level MC and on very optimistic assumptions 

● Very Long Baseline Neutrino Oscillation Experiment

νµ→ νe



Neutrino spectra of on- and off-axis BNL Superbeams
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PRD68 (2003) 12002; private communication w/ M.Diwan



How is analysis done ?
Use of SK atmospheric neutrino MC

Flatten SK atm. ν spectra and  reweight with BNL beam spectra 
Normalize with QE events: 12,000 events for νµ , 84 events for beam
νe for 0.5 Mt F.V. with 5 years of running, 2,540 (1,480) km baseline 

Reweight with oscillation probabilities for νµ and for νe

Standard SK analysis package +

∆m2
21 =7.3 x 10- 5 eV2, ∆m2

31=2.5 x 10- 3eV2

sin22θij(12,23,13)=0.86/1.0/0.04, δCP=0,+45,+135,-45,-135o

Probability tables from Brett Viren of BNL

Oscillation parameters used:

distance from BNL to Homestake
(distance from Fermilab to Henderson)

special π0 finder  

2500 kt MW 107 sec
BNL 30 GeV AGS



π0 finder : Motivation and strategy 

π0 reconstruction efficiency with standard SK software 

POLfit (Pattern Of Light fit)

true opening angle (deg)
ef

fic
ie

nc
y

All single π0 interactions
SK atm. neutrino spectra

Always looks for an extra ring in a
single e-like ring event
Compares observed light pattern 
with templates
Includes scattered light due to
processes such as Mie scattering
Gives outputs such as likelihoods
in addition to information of the
extra-photon are provided

inefficiency
due to overlap

inefficiency due to
weak 2nd ring

Inefficiency due to overlap
Inefficiency due to a week 2nd ring
Inefficiency in between

Needs a smart algorithm to increase efficiency



0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180

Opening angle (deg)

E
ffi

ci
en

cy
π0 finder: “Efficiency” 

π0 “reconstruction efficiency” with standard SK + π0 finder 
ef

fic
ie

nc
y

All NC single π0 int.

True opening angle (deg)

π0 mass cut:1- and 2-ring events

π0 mass cut:2-ring events

With atmospheric neutrino spectra

with π0 finder

without π0 finder 

with π0 finder
w/o π0 finder



Selection criteria

Likelihood analysis using the following 9 variables:

Initial cuts:
One and only one electron-like ring with energy and reconstructed
neutrino energy more than 100 MeV without any decay electron

π0 mass (pi0mass)
energy fraction (efrac)
cosθνe
π0-likelihood (pi0-like)
e-likelihood (e-like)

∆ log π0-likelihood (∆log pi0like)
single ring-ness (dlfct)
total charge/primary ring energy (poa)
Cherenkov angle (ange)

To reduce events with invisible
charged pions

Traditional SK cuts only

With π0 finder

eeN

eNrec

Em
EmE

)cos1( θν −−
=
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Trained with νe CC events for signal, νµ CC/NC & νe,τ NC for bkg
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∆ log-likelihood distributions
Trained with νe CC events for signal, νµ CC/NC & νe,τ NC for bkg

log likelihood-ratio (signal vs. background)
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TRADITIONAL ANALYSIS
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Neutrino energy reconstruction

How good is the neutrino energy measurement?

e

p
n

νe
θe

EeQE events give the best energy resolution but……
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Neutrino energy reconstruction
How good is the neutrino energy measurement?

Fermilab-Henderson (1480 km)
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Neutrino energy reconstruction
How good is the neutrino energy measurement?

Fermilab-Henderson (1480 km)

CP+45signal events
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Reconstructed neutrino energy vs. true neutrino energy
How good is the neutrino energy measurement?

Fermilab-Henderson (1480 km)
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How well can we measure neutrino energy ?
From now on only single e-like events after initial cuts will be used
Oscillation effect on with CPV+45o at 2,540 km

Erec/ Eν Eν
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• Granularity and π0 efficiency for same PMT coverage

Expected improvement with UNO?
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For smaller π0 opening angle finer
granularity is needed.

Compared with a smaller detector

π0 efficiency improves when min.
distance increases when the opening
of two photons from π0 is smaller
than about 400.

What PMT coverage needed?
10,20,40% (SK-I and SK-III has 40%
coverage) ?
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• Effect of granularity on π0 background/signal
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● Conclusions
Using a realistic MC simulation, the  BNL wideband νµ beam combined 
with a UNO type detector was found to DO A GREAT JOB whether the
baseline is 2,540 km or 1,480 km.
– Very exciting news !  But always do proper MC simulations! 

There is still room to improve S/B ratio beyond the currently available   
reconstruction software for water Cherenkov detectors.

We may need further improvement of algorithm/software, which 
is quite doable.

A larger detector such as UNO has an advantage over a smaller
detector such as SK (we learned a lesson from 1kt at K2K): 
Both PMT coverage AND granularity are important

In collaboration with BNL and Fermilab, proper simulations of a 
next generation water Cherenkov detector, its optimized design with
reasonable νµ beam will produce fruitful results on exciting physics   

To access capability of the next generation large water Cherenkov
detectors, a new set of software should be developed (frame work 
done).
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